Labels

Android (1) bash (2) boost (2) C (34) C++ (2) cheatsheet (2) CLion (6) css (3) Debian (33) DL (17) Docker (2) Dreamweaver (2) Eclipse (3) fail2ban (4) git (5) GitHub (4) Hacking (3) html (8) http (1) iOS (1) iPad (1) IRC (1) Java (31) javascript (3) Linux (167) Mac (19) Machine Learning (1) mySQL (48) Netbeans (4) Networking (1) Nexus (1) OpenVMS (6) Oracle (1) Pandas (3) php (16) Postgresql (8) Python (9) raid (1) RedHat (14) Samba (2) Slackware (47) SQL (14) svn (1) tar (1) ThinkPad (1) Virtualbox (3) Visual Basic (1) Visual Studio (1) Windows (2)

Saturday, 6 November 2021

Tensorflow Machine Learning models

 PLACEHOLDER


  • CREATE THE MODEL

model1 = tf.keras.Sequential([

    tf.keras.layers.Flatten(input_shape=(28,28)),

    tf.keras.layers.Dense(256, activation='sigmoid'),

    tf.keras.layers.Dense(10, activation='softmax')

])


Alternatively, load the model;

model1 = tf.keras.models.load_model('my_model.h5')

model1.summary() #optional


  • COMPILE THE MODEL

model.compile(...)

opt = tf.keras.optimizers.SGD(learning_rate=0.2)

opt.get_config() #optional

model1=

 model.compile(optimizer=opt,loss='binary_crossentropy',metrics=['accuracy'])

model1.optimizer.get_config() #optional

model1.summary() #optional

See also here


  • TRAIN THE MODEL

model.fit(...)

history = model.fit(train_data,validation_data=validation_data,epochs=10)

history.params #optional

history.history.keys() #optional

Train more;

history = model.fit(train_data,validation_data=validation_data,

    initial_epoch=10,epochs=20)


  • EVALUATE THE MODEL

model.evaluate(...)

#model1_results = model1.evaluate(test_dataset, return_dict=True)

model.evaluate(test_dataset, return_dict=True)


  • PREDICTIONS

model.predict(...)

model.predict(test_data)


  • PLACEHOLDER


  • PLACEHOLDER
dfgdfg

No comments:

Post a Comment

Note: only a member of this blog may post a comment.